Lista de séries matemáticas

Artigo de lista da Wikipedia

Esta lista de séries matemáticas contém fórmulas para somas finitas e infinitas. Ela pode ser usada em conjunto com outras ferramentas para avaliar somas.

  • Aqui, considera-se que 0 0 {\displaystyle 0^{0}} vale 1 {\displaystyle 1}
  • B n ( x ) {\displaystyle B_{n}(x)} é um polinômio de Bernoulli.
  • B n {\displaystyle B_{n}} é um número de Bernoulli, e aqui, B 1 = 1 2 . {\displaystyle B_{1}=-{\frac {1}{2}}.}
  • E n {\displaystyle E_{n}} é um número de Euler.
  • ζ ( s ) {\displaystyle \zeta (s)} é a função zeta de Riemann.
  • Γ ( z ) {\displaystyle \Gamma (z)} é a função gama.
  • ψ n ( z ) {\displaystyle \psi _{n}(z)} é uma função poligama.
  • Li s ( z ) {\displaystyle \operatorname {Li} _{s}(z)} é um polilogaritmo .
  • ( n k ) {\displaystyle n \choose k} é o coeficiente binomial
  • exp ( x ) {\displaystyle \exp(x)} denota a exponencial de x {\displaystyle x}

Soma de potências

Ver a fórmula de Faulhaber.

  • k = 0 m k n 1 = B n ( m + 1 ) B n n {\displaystyle \sum _{k=0}^{m}k^{n-1}={\frac {B_{n}(m+1)-B_{n}}{n}}}

Os primeiros valores são:

  • k = 1 m k = m ( m + 1 ) 2 {\displaystyle \sum _{k=1}^{m}k={\frac {m(m+1)}{2}}}
  • k = 1 m k 2 = m ( m + 1 ) ( 2 m + 1 ) 6 = m 3 3 + m 2 2 + m 6 {\displaystyle \sum _{k=1}^{m}k^{2}={\frac {m(m+1)(2m+1)}{6}}={\frac {m^{3}}{3}}+{\frac {m^{2}}{2}}+{\frac {m}{6}}}
  • k = 1 m k 3 = [ m ( m + 1 ) 2 ] 2 = m 4 4 + m 3 2 + m 2 4 {\displaystyle \sum _{k=1}^{m}k^{3}=\left[{\frac {m(m+1)}{2}}\right]^{2}={\frac {m^{4}}{4}}+{\frac {m^{3}}{2}}+{\frac {m^{2}}{4}}}

Ver constantes zeta.

  • ζ ( 2 n ) = k = 1 1 k 2 n = ( 1 ) n + 1 B 2 n ( 2 π ) 2 n 2 ( 2 n ) ! {\displaystyle \zeta (2n)=\sum _{k=1}^{\infty }{\frac {1}{k^{2n}}}=(-1)^{n+1}{\frac {B_{2n}(2\pi )^{2n}}{2(2n)!}}}

Os primeiros valores são:

  • ζ ( 2 ) = k = 1 1 k 2 = π 2 6 {\displaystyle \zeta (2)=\sum _{k=1}^{\infty }{\frac {1}{k^{2}}}={\frac {\pi ^{2}}{6}}} (o problema de Basileia)
  • ζ ( 4 ) = k = 1 1 k 4 = π 4 90 {\displaystyle \zeta (4)=\sum _{k=1}^{\infty }{\frac {1}{k^{4}}}={\frac {\pi ^{4}}{90}}}
  • ζ ( 6 ) = k = 1 1 k 6 = π 6 945 {\displaystyle \zeta (6)=\sum _{k=1}^{\infty }{\frac {1}{k^{6}}}={\frac {\pi ^{6}}{945}}}

Séries de potências

Polilogaritmos de ordem baixa

Somas com uma quantidade finita de termos:

  • k = 0 n z k = 1 z n + 1 1 z {\displaystyle \sum _{k=0}^{n}z^{k}={\frac {1-z^{n+1}}{1-z}}} , (série geométrica)
  • k = 1 n k z k = z 1 ( n + 1 ) z n + n z n + 1 ( 1 z ) 2 {\displaystyle \sum _{k=1}^{n}kz^{k}=z{\frac {1-(n+1)z^{n}+nz^{n+1}}{(1-z)^{2}}}}
  • k = 1 n k 2 z k = z 1 + z ( n + 1 ) 2 z n + ( 2 n 2 + 2 n 1 ) z n + 1 n 2 z n + 2 ( 1 z ) 3 {\displaystyle \sum _{k=1}^{n}k^{2}z^{k}=z{\frac {1+z-(n+1)^{2}z^{n}+(2n^{2}+2n-1)z^{n+1}-n^{2}z^{n+2}}{(1-z)^{3}}}}
  • k = 1 n k m z k = ( z d d z ) m 1 z n + 1 1 z {\displaystyle \sum _{k=1}^{n}k^{m}z^{k}=\left(z{\frac {d}{dz}}\right)^{m}{\frac {1-z^{n+1}}{1-z}}}

Somas com uma infinidade de termos, válidas para | z | < 1 {\displaystyle |z|<1} (ver polilogaritmo):

  • Li n ( z ) = k = 1 z k k n {\displaystyle \operatorname {Li} _{n}(z)=\sum _{k=1}^{\infty }{\frac {z^{k}}{k^{n}}}}

A propriedade a seguir é útil para calcular polilogaritmos de ordem inteira baixa recursivamente de forma fechada:

  • d d z Li n ( z ) = Li n 1 ( z ) z {\displaystyle {\frac {\mathrm {d} }{\mathrm {d} z}}\operatorname {Li} _{n}(z)={\frac {\operatorname {Li} _{n-1}(z)}{z}}}
  • Li 1 ( z ) = k = 1 z k k = ln ( 1 z ) {\displaystyle \operatorname {Li} _{1}(z)=\sum _{k=1}^{\infty }{\frac {z^{k}}{k}}=-\ln(1-z)}
  • Li 0 ( z ) = k = 1 z k = z 1 z {\displaystyle \operatorname {Li} _{0}(z)=\sum _{k=1}^{\infty }z^{k}={\frac {z}{1-z}}}
  • Li 1 ( z ) = k = 1 k z k = z ( 1 z ) 2 {\displaystyle \operatorname {Li} _{-1}(z)=\sum _{k=1}^{\infty }kz^{k}={\frac {z}{(1-z)^{2}}}}
  • Li 2 ( z ) = k = 1 k 2 z k = z ( 1 + z ) ( 1 z ) 3 {\displaystyle \operatorname {Li} _{-2}(z)=\sum _{k=1}^{\infty }k^{2}z^{k}={\frac {z(1+z)}{(1-z)^{3}}}}
  • Li 3 ( z ) = k = 1 k 3 z k = z ( 1 + 4 z + z 2 ) ( 1 z ) 4 {\displaystyle \operatorname {Li} _{-3}(z)=\sum _{k=1}^{\infty }k^{3}z^{k}={\frac {z(1+4z+z^{2})}{(1-z)^{4}}}}
  • Li 4 ( z ) = k = 1 k 4 z k = z ( 1 + z ) ( 1 + 10 z + z 2 ) ( 1 z ) 5 {\displaystyle \operatorname {Li} _{-4}(z)=\sum _{k=1}^{\infty }k^{4}z^{k}={\frac {z(1+z)(1+10z+z^{2})}{(1-z)^{5}}}}

Função exponencial

  • k = 0 z k k ! = e z {\displaystyle \sum _{k=0}^{\infty }{\frac {z^{k}}{k!}}=e^{z}}
  • k = 0 k z k k ! = z e z {\displaystyle \sum _{k=0}^{\infty }k{\frac {z^{k}}{k!}}=ze^{z}} (ver média da distribuição de Poisson)
  • k = 0 k 2 z k k ! = ( z + z 2 ) e z {\displaystyle \sum _{k=0}^{\infty }k^{2}{\frac {z^{k}}{k!}}=(z+z^{2})e^{z}} (ver segundo momento da distribuição de Poisson)
  • k = 0 k 3 z k k ! = ( z + 3 z 2 + z 3 ) e z {\displaystyle \sum _{k=0}^{\infty }k^{3}{\frac {z^{k}}{k!}}=(z+3z^{2}+z^{3})e^{z}}
  • k = 0 k 4 z k k ! = ( z + 7 z 2 + 6 z 3 + z 4 ) e z {\displaystyle \sum _{k=0}^{\infty }k^{4}{\frac {z^{k}}{k!}}=(z+7z^{2}+6z^{3}+z^{4})e^{z}}
  • k = 0 k n z k k ! = z d d z k = 0 k n 1 z k k ! = e z T n ( z ) {\displaystyle \sum _{k=0}^{\infty }k^{n}{\frac {z^{k}}{k!}}=z{\frac {d}{dz}}\sum _{k=0}^{\infty }k^{n-1}{\frac {z^{k}}{k!}}\,\!=e^{z}T_{n}(z)}

em que T n ( z ) {\displaystyle T_{n}(z)} são os polinômios de Touchard.

Funções trigonométricas, trigonométricas inversas, hiperbólicas e hiperbólicas inversas

  • k = 0 ( 1 ) k z 2 k + 1 ( 2 k + 1 ) ! = s e n z {\displaystyle \sum _{k=0}^{\infty }{\frac {(-1)^{k}z^{2k+1}}{(2k+1)!}}=\mathrm {sen} \,z}
  • k = 0 z 2 k + 1 ( 2 k + 1 ) ! = s e n h z {\displaystyle \sum _{k=0}^{\infty }{\frac {z^{2k+1}}{(2k+1)!}}=\mathrm {senh} \,z}
  • k = 0 ( 1 ) k z 2 k ( 2 k ) ! = cos z {\displaystyle \sum _{k=0}^{\infty }{\frac {(-1)^{k}z^{2k}}{(2k)!}}=\cos z}
  • k = 0 z 2 k ( 2 k ) ! = cosh z {\displaystyle \sum _{k=0}^{\infty }{\frac {z^{2k}}{(2k)!}}=\cosh z}
  • k = 1 ( 1 ) k 1 ( 2 2 k 1 ) 2 2 k B 2 k z 2 k 1 ( 2 k ) ! = tan z , | z | < π 2 {\displaystyle \sum _{k=1}^{\infty }{\frac {(-1)^{k-1}(2^{2k}-1)2^{2k}B_{2k}z^{2k-1}}{(2k)!}}=\tan z,|z|<{\frac {\pi }{2}}}
  • k = 1 ( 2 2 k 1 ) 2 2 k B 2 k z 2 k 1 ( 2 k ) ! = tanh z , | z | < π 2 {\displaystyle \sum _{k=1}^{\infty }{\frac {(2^{2k}-1)2^{2k}B_{2k}z^{2k-1}}{(2k)!}}=\tanh z,|z|<{\frac {\pi }{2}}}
  • k = 0 ( 1 ) k 2 2 k B 2 k z 2 k 1 ( 2 k ) ! = cot z , | z | < π {\displaystyle \sum _{k=0}^{\infty }{\frac {(-1)^{k}2^{2k}B_{2k}z^{2k-1}}{(2k)!}}=\cot z,|z|<\pi }
  • k = 0 2 2 k B 2 k z 2 k 1 ( 2 k ) ! = coth z , | z | < π {\displaystyle \sum _{k=0}^{\infty }{\frac {2^{2k}B_{2k}z^{2k-1}}{(2k)!}}=\coth z,|z|<\pi }
  • k = 0 ( 1 ) k 1 ( 2 2 k 2 ) B 2 k z 2 k 1 ( 2 k ) ! = csc z , | z | < π {\displaystyle \sum _{k=0}^{\infty }{\frac {(-1)^{k-1}(2^{2k}-2)B_{2k}z^{2k-1}}{(2k)!}}=\csc z,|z|<\pi }
  • k = 0 ( 2 2 k 2 ) B 2 k z 2 k 1 ( 2 k ) ! = csch z , | z | < π {\displaystyle \sum _{k=0}^{\infty }{\frac {-(2^{2k}-2)B_{2k}z^{2k-1}}{(2k)!}}=\operatorname {csch} z,|z|<\pi }
  • k = 0 ( 1 ) k E 2 k z 2 k ( 2 k ) ! = sech z , | z | < π 2 {\displaystyle \sum _{k=0}^{\infty }{\frac {(-1)^{k}E_{2k}z^{2k}}{(2k)!}}=\operatorname {sech} z,|z|<{\frac {\pi }{2}}}
  • k = 0 E 2 k z 2 k ( 2 k ) ! = sec z , | z | < π 2 {\displaystyle \sum _{k=0}^{\infty }{\frac {E_{2k}z^{2k}}{(2k)!}}=\sec z,|z|<{\frac {\pi }{2}}}
  • k = 1 ( 1 ) k 1 z 2 k ( 2 k ) ! = ver z {\displaystyle \sum _{k=1}^{\infty }{\frac {(-1)^{k-1}z^{2k}}{(2k)!}}=\operatorname {ver} z} (seno verso)
  • k = 1 ( 1 ) k 1 z 2 k 2 ( 2 k ) ! = hav z {\displaystyle \sum _{k=1}^{\infty }{\frac {(-1)^{k-1}z^{2k}}{2(2k)!}}=\operatorname {hav} z} [1] (haversine)
  • k = 0 ( 2 k ) ! z 2 k + 1 2 2 k ( k ! ) 2 ( 2 k + 1 ) = a r c s e n z , | z | 1 {\displaystyle \sum _{k=0}^{\infty }{\frac {(2k)!z^{2k+1}}{2^{2k}(k!)^{2}(2k+1)}}=\mathrm {arcsen} \,z,|z|\leq 1}
  • k = 0 ( 1 ) k ( 2 k ) ! z 2 k + 1 2 2 k ( k ! ) 2 ( 2 k + 1 ) = arcsenh z , | z | 1 {\displaystyle \sum _{k=0}^{\infty }{\frac {(-1)^{k}(2k)!z^{2k+1}}{2^{2k}(k!)^{2}(2k+1)}}=\operatorname {arcsenh} {z},|z|\leq 1}
  • k = 0 ( 1 ) k z 2 k + 1 2 k + 1 = arctan z , | z | < 1 {\displaystyle \sum _{k=0}^{\infty }{\frac {(-1)^{k}z^{2k+1}}{2k+1}}=\arctan z,|z|<1}
  • k = 0 z 2 k + 1 2 k + 1 = arctanh z , | z | < 1 {\displaystyle \sum _{k=0}^{\infty }{\frac {z^{2k+1}}{2k+1}}=\operatorname {arctanh} z,|z|<1}
  • ln 2 + k = 1 ( 1 ) k 1 ( 2 k ) ! z 2 k 2 2 k + 1 k ( k ! ) 2 = ln ( 1 + 1 + z 2 ) , | z | 1 {\displaystyle \ln 2+\sum _{k=1}^{\infty }{\frac {(-1)^{k-1}(2k)!z^{2k}}{2^{2k+1}k(k!)^{2}}}=\ln \left(1+{\sqrt {1+z^{2}}}\right),|z|\leq 1}

Denominadores fatoriais modificados

  • k = 0 ( 4 k ) ! 2 4 k 2 ( 2 k ) ! ( 2 k + 1 ) ! z k = 1 1 z z , | z | < 1 {\displaystyle \sum _{k=0}^{\infty }{\frac {(4k)!}{2^{4k}{\sqrt {2}}(2k)!(2k+1)!}}z^{k}={\sqrt {\frac {1-{\sqrt {1-z}}}{z}}},|z|<1} [2]
  • k = 0 2 2 k ( k ! ) 2 ( k + 1 ) ( 2 k + 1 ) ! z 2 k + 2 = ( a r c s e n z ) 2 , | z | 1 {\displaystyle \sum _{k=0}^{\infty }{\frac {2^{2k}(k!)^{2}}{(k+1)(2k+1)!}}z^{2k+2}=\left(\mathrm {arcsen} \,{z}\right)^{2},|z|\leq 1}
  • n = 0 k = 0 n 1 ( 4 k 2 + α 2 ) ( 2 n ) ! z 2 n + n = 0 α k = 0 n 1 [ ( 2 k + 1 ) 2 + α 2 ] ( 2 n + 1 ) ! z 2 n + 1 = e α a r c s e n z , | z | 1 {\displaystyle \sum _{n=0}^{\infty }{\frac {\prod _{k=0}^{n-1}(4k^{2}+\alpha ^{2})}{(2n)!}}z^{2n}+\sum _{n=0}^{\infty }{\frac {\alpha \prod _{k=0}^{n-1}[(2k+1)^{2}+\alpha ^{2}]}{(2n+1)!}}z^{2n+1}=e^{\alpha \mathrm {arcsen} \,{z}},|z|\leq 1}

Coeficientes binomiais

  • ( 1 + z ) α = k = 0 ( α k ) z k , | z | < 1 {\displaystyle (1+z)^{\alpha }=\sum _{k=0}^{\infty }{\alpha \choose k}z^{k},|z|<1} (ver teorema binomial)
  • [3] k = 0 ( α + k 1 k ) z k = 1 ( 1 z ) α , | z | < 1 {\displaystyle \sum _{k=0}^{\infty }{{\alpha +k-1} \choose k}z^{k}={\frac {1}{(1-z)^{\alpha }}},|z|<1}
  • k = 0 1 k + 1 ( 2 k k ) z k = 1 1 4 z 2 z , | z | 1 4 {\displaystyle \sum _{k=0}^{\infty }{\frac {1}{k+1}}{2k \choose k}z^{k}={\frac {1-{\sqrt {1-4z}}}{2z}},|z|\leq {\frac {1}{4}}} , função geradora dos dos números de Catalan
  • k = 0 ( 2 k k ) z k = 1 1 4 z , | z | < 1 4 {\displaystyle \sum _{k=0}^{\infty }{2k \choose k}z^{k}={\frac {1}{\sqrt {1-4z}}},|z|<{\frac {1}{4}}} , função geradora dos coeficientes binomiais centrais
  • k = 0 ( 2 k + α k ) z k = 1 1 4 z ( 1 1 4 z 2 z ) α , | z | < 1 4 {\displaystyle \sum _{k=0}^{\infty }{2k+\alpha \choose k}z^{k}={\frac {1}{\sqrt {1-4z}}}\left({\frac {1-{\sqrt {1-4z}}}{2z}}\right)^{\alpha },|z|<{\frac {1}{4}}}

Números harmônicos

(Ver números harmônicos, que são definidos por H n = j = 1 n 1 j {\textstyle H_{n}=\sum _{j=1}^{n}{\frac {1}{j}}} )

  • k = 1 H k z k = ln ( 1 z ) 1 z , | z | < 1 {\displaystyle \sum _{k=1}^{\infty }H_{k}z^{k}={\frac {-\ln(1-z)}{1-z}},|z|<1}
  • k = 1 H k k + 1 z k + 1 = 1 2 [ ln ( 1 z ) ] 2 , | z | < 1 {\displaystyle \sum _{k=1}^{\infty }{\frac {H_{k}}{k+1}}z^{k+1}={\frac {1}{2}}\left[\ln(1-z)\right]^{2},\qquad |z|<1}
  • k = 1 ( 1 ) k 1 H 2 k 2 k + 1 z 2 k + 1 = 1 2 arctan z log ( 1 + z 2 ) , | z | < 1 {\displaystyle \sum _{k=1}^{\infty }{\frac {(-1)^{k-1}H_{2k}}{2k+1}}z^{2k+1}={\frac {1}{2}}\arctan {z}\log {(1+z^{2})},\qquad |z|<1} [2]
  • n = 0 k = 0 2 n ( 1 ) k 2 k + 1 z 4 n + 2 4 n + 2 = 1 4 arctan z log 1 + z 1 z , | z | < 1 {\displaystyle \sum _{n=0}^{\infty }\sum _{k=0}^{2n}{\frac {(-1)^{k}}{2k+1}}{\frac {z^{4n+2}}{4n+2}}={\frac {1}{4}}\arctan {z}\log {\frac {1+z}{1-z}},\qquad |z|<1}

Coeficientes binomiais

  • k = 0 n ( n k ) = 2 n {\displaystyle \sum _{k=0}^{n}{n \choose k}=2^{n}}
  • k = 0 n ( 1 ) k ( n k ) = 0 ,  where  n > 0 {\displaystyle \sum _{k=0}^{n}(-1)^{k}{n \choose k}=0,{\text{ where }}n>0}
  • k = 0 n ( k m ) = ( n + 1 m + 1 ) {\displaystyle \sum _{k=0}^{n}{k \choose m}={n+1 \choose m+1}}
  • k = 0 n ( m + k 1 k ) = ( n + m n ) {\displaystyle \sum _{k=0}^{n}{m+k-1 \choose k}={n+m \choose n}} (consulte multiconjunto)
  • k = 0 n ( α k ) ( β n k ) = ( α + β n ) {\displaystyle \sum _{k=0}^{n}{\alpha \choose k}{\beta \choose n-k}={\alpha +\beta \choose n}} (ver a identidade de Vandermonde)

Funções trigonométricas

Soma de senos e cossenos surgem nas séries de Fourier.

  • k = 1 s e n ( k θ ) k = π θ 2 , 0 < θ < 2 π {\displaystyle \sum _{k=1}^{\infty }{\frac {\mathrm {sen} \,(k\theta )}{k}}={\frac {\pi -\theta }{2}},0<\theta <2\pi }
  • k = 1 cos ( k θ ) k = 1 2 ln ( 2 2 cos θ ) , θ R {\displaystyle \sum _{k=1}^{\infty }{\frac {\cos(k\theta )}{k}}=-{\frac {1}{2}}\ln(2-2\cos \theta ),\theta \in \mathbb {R} }
  • k = 0 s e n [ ( 2 k + 1 ) θ ] 2 k + 1 = π 4 , 0 < θ < π {\displaystyle \sum _{k=0}^{\infty }{\frac {\mathrm {sen} \,[(2k+1)\theta ]}{2k+1}}={\frac {\pi }{4}},0<\theta <\pi } ,[4]
  • B n ( x ) = n ! 2 n 1 π n k = 1 1 k n cos ( 2 π k x π n 2 ) , 0 < x < 1 {\displaystyle B_{n}(x)=-{\frac {n!}{2^{n-1}\pi ^{n}}}\sum _{k=1}^{\infty }{\frac {1}{k^{n}}}\cos \left(2\pi kx-{\frac {\pi n}{2}}\right),0<x<1} [5]
  • k = 0 n s e n ( θ + k α ) = s e n ( n + 1 ) α 2 s e n ( θ + n α 2 ) s e n α 2 {\displaystyle \sum _{k=0}^{n}\mathrm {sen} \,(\theta +k\alpha )={\frac {\mathrm {sen} \,{\frac {(n+1)\alpha }{2}}\mathrm {sen} \,(\theta +{\frac {n\alpha }{2}})}{\mathrm {sen} \,{\frac {\alpha }{2}}}}}
  • k = 0 n cos ( θ + k α ) = s e n ( n + 1 ) α 2 cos ( θ + n α 2 ) s e n α 2 {\displaystyle \sum _{k=0}^{n}\cos(\theta +k\alpha )={\frac {\mathrm {sen} \,{\frac {(n+1)\alpha }{2}}\cos(\theta +{\frac {n\alpha }{2}})}{\mathrm {sen} \,{\frac {\alpha }{2}}}}}
  • k = 1 n 1 s e n π k n = cot π 2 n {\displaystyle \sum _{k=1}^{n-1}\mathrm {sen} \,{\frac {\pi k}{n}}=\cot {\frac {\pi }{2n}}}
  • k = 1 n 1 s e n 2 π k n = 0 {\displaystyle \sum _{k=1}^{n-1}\mathrm {sen} \,{\frac {2\pi k}{n}}=0}
  • k = 0 n 1 csc 2 ( θ + π k n ) = n 2 csc 2 ( n θ ) {\displaystyle \sum _{k=0}^{n-1}\csc ^{2}\left(\theta +{\frac {\pi k}{n}}\right)=n^{2}\csc ^{2}(n\theta )} [6]
  • k = 1 n 1 csc 2 π k n = n 2 1 3 {\displaystyle \sum _{k=1}^{n-1}\csc ^{2}{\frac {\pi k}{n}}={\frac {n^{2}-1}{3}}}
  • k = 1 n 1 csc 4 π k n = n 4 + 10 n 2 11 45 {\displaystyle \sum _{k=1}^{n-1}\csc ^{4}{\frac {\pi k}{n}}={\frac {n^{4}+10n^{2}-11}{45}}}

Funções racionais

  • n = a + 1 a n 2 a 2 = 1 2 H 2 a {\displaystyle \sum _{n=a+1}^{\infty }{\frac {a}{n^{2}-a^{2}}}={\frac {1}{2}}H_{2a}} [7]
  • n = 0 1 n 2 + a 2 = 1 + a π coth ( a π ) 2 a 2 {\displaystyle \sum _{n=0}^{\infty }{\frac {1}{n^{2}+a^{2}}}={\frac {1+a\pi \coth(a\pi )}{2a^{2}}}}
  • n = 0 1 n 4 + 4 a 4 = 1 + a π coth ( a π ) 8 a 4 {\displaystyle \displaystyle \sum _{n=0}^{\infty }{\frac {1}{n^{4}+4a^{4}}}={\dfrac {1+a\pi \coth(a\pi )}{8a^{4}}}}
  • Uma série infinita de qualquer função racional de n {\displaystyle n} pode ser reduzida a uma série finita de funções poligama, pelo uso da decomposição em frações parciais.[8] Esse fato também pode ser aplicado a séries finitas de funções racionais, permitindo que o resultado seja calculado em tempo constante, mesmo quando a série contém um grande número de termos.

Função exponencial

  • 1 p n = 0 p 1 exp ( 2 π i n 2 q p ) = e π i / 4 2 q n = 0 2 q 1 exp ( π i n 2 p 2 q ) {\displaystyle \displaystyle {\dfrac {1}{\sqrt {p}}}\sum _{n=0}^{p-1}\exp \left({\frac {2\pi in^{2}q}{p}}\right)={\dfrac {e^{\pi i/4}}{\sqrt {2q}}}\sum _{n=0}^{2q-1}\exp \left(-{\frac {\pi in^{2}p}{2q}}\right)} (veja a relação de Landsberg-Schaar)
  • n = e π n 2 = π 4 Γ ( 3 4 ) {\displaystyle \displaystyle \sum _{n=-\infty }^{\infty }e^{-\pi n^{2}}={\frac {\sqrt[{4}]{\pi }}{\Gamma \left({\frac {3}{4}}\right)}}}

Ver também

Notas

  1. Weisstein, Eric W. «Haversine». Wolfram Research, Inc. Consultado em 6 de novembro de 2015. Cópia arquivada em 10 de março de 2005 
  2. a b Wilf, Herbert R. (1994). generatingfunctionology (PDF). Academic Press, Inc. [S.l.: s.n.] 
  3. «Theoretical computer science cheat sheet» (PDF) 
  4. Calculate the Fourier expansion of the function f ( x ) = π 4 {\displaystyle f(x)={\frac {\pi }{4}}} on the interval 0 < x < π {\displaystyle 0<x<\pi } :
  5. «Bernoulli polynomials: Series representations (subsection 06/02)». Wolfram Research. Consultado em 2 de junho de 2011 
  6. Hofbauer, Josef. «A simple proof of 1+1/2^2+1/3^2+...=PI^2/6 and related identities» (PDF). Consultado em 2 de junho de 2011 
  7. Sondow, Jonathan; Weisstein, Eric W. «Riemann Zeta Function (eq. 52)». MathWorld—A Wolfram Web Resource 
  8. Abramowitz, Milton; Stegun, Irene (1964). «6.4 Polygamma functions». Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. [S.l.: s.n.] ISBN 0-486-61272-4 

Referências