Smooth coarea formula

In Riemannian geometry, the smooth coarea formulas relate integrals over the domain of certain mappings with integrals over their codomains.

Let M , N {\displaystyle \scriptstyle M,\,N} be smooth Riemannian manifolds of respective dimensions m n {\displaystyle \scriptstyle m\,\geq \,n} . Let F : M N {\displaystyle \scriptstyle F:M\,\longrightarrow \,N} be a smooth surjection such that the pushforward (differential) of F {\displaystyle \scriptstyle F} is surjective almost everywhere. Let φ : M [ 0 , ) {\displaystyle \scriptstyle \varphi :M\,\longrightarrow \,[0,\infty )} a measurable function. Then, the following two equalities hold:

x M φ ( x ) d M = y N x F 1 ( y ) φ ( x ) 1 N J F ( x ) d F 1 ( y ) d N {\displaystyle \int _{x\in M}\varphi (x)\,dM=\int _{y\in N}\int _{x\in F^{-1}(y)}\varphi (x){\frac {1}{N\!J\;F(x)}}\,dF^{-1}(y)\,dN}
x M φ ( x ) N J F ( x ) d M = y N x F 1 ( y ) φ ( x ) d F 1 ( y ) d N {\displaystyle \int _{x\in M}\varphi (x)N\!J\;F(x)\,dM=\int _{y\in N}\int _{x\in F^{-1}(y)}\varphi (x)\,dF^{-1}(y)\,dN}

where N J F ( x ) {\displaystyle \scriptstyle N\!J\;F(x)} is the normal Jacobian of F {\displaystyle \scriptstyle F} , i.e. the determinant of the derivative restricted to the orthogonal complement of its kernel.

Note that from Sard's lemma almost every point y N {\displaystyle \scriptstyle y\,\in \,N} is a regular point of F {\displaystyle \scriptstyle F} and hence the set F 1 ( y ) {\displaystyle \scriptstyle F^{-1}(y)} is a Riemannian submanifold of M {\displaystyle \scriptstyle M} , so the integrals in the right-hand side of the formulas above make sense.

References

  • Chavel, Isaac (2006) Riemannian Geometry. A Modern Introduction. Second Edition.


  • v
  • t
  • e