SOX17

Protein-coding gene in the species Homo sapiens
SOX17
Available structures
PDBOrtholog search: PDBe RCSB
List of PDB id codes

2YUL, 4A3N

Identifiers
AliasesSOX17, VUR3, SRY-box 17, SRY-box transcription factor 17
External IDsOMIM: 610928; MGI: 107543; HomoloGene: 7948; GeneCards: SOX17; OMA:SOX17 - orthologs
Gene location (Human)
Chromosome 8 (human)
Chr.Chromosome 8 (human)[1]
Chromosome 8 (human)
Genomic location for SOX17
Genomic location for SOX17
Band8q11.23Start54,457,935 bp[1]
End54,460,892 bp[1]
Gene location (Mouse)
Chromosome 1 (mouse)
Chr.Chromosome 1 (mouse)[2]
Chromosome 1 (mouse)
Genomic location for SOX17
Genomic location for SOX17
Band1 A1|1 1.65 cMStart4,561,154 bp[2]
End4,567,577 bp[2]
RNA expression pattern
Bgee
HumanMouse (ortholog)
Top expressed in
  • endothelial cell

  • pericardium

  • endometrium

  • right uterine tube

  • vena cava

  • gonad

  • left uterine tube

  • tibial nerve

  • subcutaneous adipose tissue

  • muscle of thigh
Top expressed in
  • left lung lobe

  • gastrula

  • external carotid artery

  • primitive streak

  • internal carotid artery

  • right lung

  • right lung lobe

  • uterus

  • carotid body

  • substantia nigra
More reference expression data
BioGPS
n/a
Gene ontology
Molecular function
  • sequence-specific DNA binding
  • DNA binding
  • beta-catenin binding
  • DNA-binding transcription factor activity
  • DNA-binding transcription activator activity, RNA polymerase II-specific
  • transcription coactivator activity
  • transcription factor binding
  • protein binding
  • protein heterodimerization activity
  • transcription factor activity, RNA polymerase II distal enhancer sequence-specific binding
  • DNA-binding transcription factor activity, RNA polymerase II-specific
Cellular component
  • transcription regulator complex
  • nucleoplasm
  • nucleus
Biological process
  • renal system development
  • endoderm development
  • regulation of embryonic development
  • regulation of transcription, DNA-templated
  • positive regulation of protein catabolic process
  • stem cell fate specification
  • positive regulation of skeletal muscle tissue development
  • embryonic foregut morphogenesis
  • embryonic organ development
  • endodermal digestive tract morphogenesis
  • negative regulation of mesodermal cell fate specification
  • inner cell mass cellular morphogenesis
  • negative regulation of Wnt signaling pathway
  • protein stabilization
  • endocardium formation
  • outflow tract morphogenesis
  • signal transduction involved in regulation of gene expression
  • endodermal cell fate determination
  • mRNA transcription by RNA polymerase II
  • regulation of mesodermal cell fate specification
  • negative regulation of transcription by RNA polymerase II
  • Wnt signaling pathway
  • endocardial cell differentiation
  • regulation of cardiac cell fate specification
  • transcription, DNA-templated
  • stem cell differentiation
  • embryonic heart tube development
  • vasculogenesis
  • positive regulation of transcription, DNA-templated
  • heart looping
  • cardiac cell fate determination
  • common bile duct development
  • negative regulation of Wnt signaling pathway involved in heart development
  • rostrocaudal neural tube patterning
  • positive regulation of gene expression
  • cardiogenic plate morphogenesis
  • heart formation
  • embryonic heart tube morphogenesis
  • negative regulation of cell growth
  • protein destabilization
  • angiogenesis
  • spermatogenesis
  • positive regulation of cell differentiation
  • regulation of stem cell division
  • gastrulation
  • gall bladder development
  • canonical Wnt signaling pathway
  • regulation of cell differentiation
  • cell migration involved in gastrulation
  • endoderm formation
  • regulation of stem cell proliferation
  • negative regulation of canonical Wnt signaling pathway
  • positive regulation of transcription by RNA polymerase II
  • cellular response to leukemia inhibitory factor
  • cell differentiation
Sources:Amigo / QuickGO
Orthologs
SpeciesHumanMouse
Entrez

64321

20671

Ensembl

ENSG00000164736

ENSMUSG00000025902

UniProt

Q9H6I2

Q61473

RefSeq (mRNA)

NM_022454

NM_001289464
NM_001289465
NM_001289466
NM_001289467
NM_011441

RefSeq (protein)

NP_071899

NP_001276393
NP_001276394
NP_001276395
NP_001276396
NP_035571

Location (UCSC)Chr 8: 54.46 – 54.46 MbChr 1: 4.56 – 4.57 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

SRY-box 17 is a protein that in humans is encoded by the SOX17 gene. [5]

Regulation at the human SOX17 locus

The gene encodes a member of the SOX (SRY-related HMG-box) family of transcription factors, located on Chromosome 8 q11.23. Its gene body is isolated within a CTCF loop domain.[6][7][8] Approximately 230 kb upstream of SOX17 it has been identified a tissue specific differentially (hypo-)methylated region (DMR), which consists of SOX17 regulatory elements.[9][10] The DMR in particular bears the most distal definitive endoderm specific enhancer at the SOX17 locus.[11] SOX17 itself has recently been defined as so called topologically insulated gene (TIG). TIGs per definition are single protein coding genes (PCGs) within CTCF loop domains, that are mainly enriched in developmental regulators and suggested to be very tightly controlled via their 3D loop-domain architecture.[12]

Function in development

SOX17 is involved in the regulation of vertebrate embryonic development and in the determination of the endodermal cell fate. The encoded protein acts downstream of TGF beta signaling (Activin) and canonical WNT signaling (Wnt3a).[13][14] Especially the correct phosphorylation of SMAD2/3 within the respective cell cycle (early G1 phase) is crucial for the activation of cardinal endodermal genes (e.g. SOX17) to further enter the definitive endodermal lineage.[15] Besides that, perturbation of the SOX17 centromertic CTCF-boundary in early definitive endoderm differentiation, leads to massive developmental failure and a so-called mes-endodermal like trapped cell-state, which can be rescued by ectopic SOX17 expression.[16] In Xenopus gastrulae it has been shown that SOX17 modifies Wnt responses, where genomic specificity of Wnt/β-catenin transcription is determined through functional interactions between SOX17 and β-catenin/Tcf transcriptional complexes.[17]

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000164736 – Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000025902 – Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ "Entrez Gene: SRY-box 17". Retrieved 2017-09-07.
  6. ^ Rao SS, Huang SC, Glenn St Hilaire B, Engreitz JM, Perez EM, Kieffer-Kwon KR, et al. (October 2017). "Cohesin Loss Eliminates All Loop Domains". Cell. 171 (2): 305–320.e24. doi:10.1016/j.cell.2017.09.026. hdl:1721.1/118942. PMC 5846482. PMID 28985562.
  7. ^ Szabo Q, Bantignies F, Cavalli G (April 2019). "Principles of genome folding into topologically associating domains". Science Advances. 5 (4): eaaw1668. Bibcode:2019SciA....5.1668S. doi:10.1126/sciadv.aaw1668. PMC 6457944. PMID 30989119.
  8. ^ Wu, Hua-Jun; Landshammer, Alexandro; Stamenova, Elena K.; Bolondi, Adriano; Kretzmer, Helene; Meissner, Alexander; Michor, Franziska (2021-08-12). "Topological isolation of developmental regulators in mammalian genomes". Nature Communications. 12 (1): 4897. Bibcode:2021NatCo..12.4897W. doi:10.1038/s41467-021-24951-7. ISSN 2041-1723. PMC 8361032. PMID 34385432.
  9. ^ Tsankov AM, Gu H, Akopian V, Ziller MJ, Donaghey J, Amit I, et al. (February 2015). "Transcription factor binding dynamics during human ES cell differentiation". Nature. 518 (7539): 344–9. Bibcode:2015Natur.518..344T. doi:10.1038/nature14233. PMC 4499331. PMID 25693565.
  10. ^ Wu, Hua-Jun; Landshammer, Alexandro; Stamenova, Elena K.; Bolondi, Adriano; Kretzmer, Helene; Meissner, Alexander; Michor, Franziska (2021-08-12). "Topological isolation of developmental regulators in mammalian genomes". Nature Communications. 12 (1): 4897. Bibcode:2021NatCo..12.4897W. doi:10.1038/s41467-021-24951-7. ISSN 2041-1723. PMC 8361032. PMID 34385432.
  11. ^ Wu, Hua-Jun; Landshammer, Alexandro; Stamenova, Elena K.; Bolondi, Adriano; Kretzmer, Helene; Meissner, Alexander; Michor, Franziska (2021-08-12). "Topological isolation of developmental regulators in mammalian genomes". Nature Communications. 12 (1): 4897. Bibcode:2021NatCo..12.4897W. doi:10.1038/s41467-021-24951-7. ISSN 2041-1723. PMC 8361032. PMID 34385432.
  12. ^ Wu, Hua-Jun; Landshammer, Alexandro; Stamenova, Elena K.; Bolondi, Adriano; Kretzmer, Helene; Meissner, Alexander; Michor, Franziska (2021-08-12). "Topological isolation of developmental regulators in mammalian genomes". Nature Communications. 12 (1): 4897. Bibcode:2021NatCo..12.4897W. doi:10.1038/s41467-021-24951-7. ISSN 2041-1723. PMC 8361032. PMID 34385432.
  13. ^ Engert S, Burtscher I, Liao WP, Dulev S, Schotta G, Lickert H (August 2013). "Wnt/β-catenin signalling regulates Sox17 expression and is essential for organizer and endoderm formation in the mouse". Development. 140 (15): 3128–38. doi:10.1242/dev.088765. PMID 23824574.
  14. ^ Mukherjee S, Chaturvedi P, Rankin SA, Fish MB, Wlizla M, Paraiso KD, et al. (September 2020). LaBonne C, Morrisey EE (eds.). "Sox17 and β-catenin co-occupy Wnt-responsive enhancers to govern the endoderm gene regulatory network". eLife. 9: e58029. doi:10.7554/eLife.58029. PMC 7498262. PMID 32894225.
  15. ^ Pauklin S, Vallier L (September 2013). "The cell-cycle state of stem cells determines cell fate propensity". Cell. 155 (1): 135–47. doi:10.1016/j.cell.2013.08.031. PMC 3898746. PMID 24074866.
  16. ^ Wu, Hua-Jun; Landshammer, Alexandro; Stamenova, Elena K.; Bolondi, Adriano; Kretzmer, Helene; Meissner, Alexander; Michor, Franziska (2021-08-12). "Topological isolation of developmental regulators in mammalian genomes". Nature Communications. 12 (1): 4897. Bibcode:2021NatCo..12.4897W. doi:10.1038/s41467-021-24951-7. ISSN 2041-1723. PMC 8361032. PMID 34385432.
  17. ^ Mukherjee, Shreyasi; Chaturvedi, Praneet; Rankin, Scott A; Fish, Margaret B; Wlizla, Marcin; Paraiso, Kitt D; MacDonald, Melissa; Chen, Xiaoting; Weirauch, Matthew T; Blitz, Ira L; Cho, Ken WY (2020-09-07). LaBonne, Carole; Morrisey, Edward E (eds.). "Sox17 and β-catenin co-occupy Wnt-responsive enhancers to govern the endoderm gene regulatory network". eLife. 9: e58029. doi:10.7554/eLife.58029. ISSN 2050-084X. PMC 7498262. PMID 32894225.

Further reading

  • Zhang W, Glöckner SC, Guo M, Machida EO, Wang DH, Easwaran H, et al. (April 2008). "Epigenetic inactivation of the canonical Wnt antagonist SRY-box containing gene 17 in colorectal cancer". Cancer Research. 68 (8): 2764–72. doi:10.1158/0008-5472.CAN-07-6349. PMC 2823123. PMID 18413743.
  • Patterson ES, Addis RC, Shamblott MJ, Gearhart JD (August 2008). "SOX17 directly activates Zfp202 transcription during in vitro endoderm differentiation". Physiological Genomics. 34 (3): 277–84. doi:10.1152/physiolgenomics.90236.2008. PMID 18523156.
  • Ferrell RE, Kimak MA, Lawrence EC, Finegold DN (2008). "Candidate gene analysis in primary lymphedema". Lymphatic Research and Biology. 6 (2): 69–76. doi:10.1089/lrb.2007.1022. PMID 18564921.
  • Séguin CA, Draper JS, Nagy A, Rossant J (August 2008). "Establishment of endoderm progenitors by SOX transcription factor expression in human embryonic stem cells". Cell Stem Cell. 3 (2): 182–95. doi:10.1016/j.stem.2008.06.018. PMID 18682240.
  • Semb H (October 2008). "Expandable endodermal progenitors: new tools to explore endoderm and its derivatives". Cell Stem Cell. 3 (4): 355–6. doi:10.1016/j.stem.2008.09.010. PMID 18940723.
  • Fu DY, Wang ZM, Wang BL, Shen ZZ, Huang W, Shao ZM (February 2010). "Sox17, the canonical Wnt antagonist, is epigenetically inactivated by promoter methylation in human breast cancer". Breast Cancer Research and Treatment. 119 (3): 601–12. doi:10.1007/s10549-009-0339-8. PMID 19301122. S2CID 8614063.
  • Nonaka D (May 2009). "Differential expression of SOX2 and SOX17 in testicular germ cell tumors". American Journal of Clinical Pathology. 131 (5): 731–6. doi:10.1309/AJCP7MNCNBCRN8NO. PMID 19369635.
  • Du YC, Oshima H, Oguma K, Kitamura T, Itadani H, Fujimura T, et al. (October 2009). "Induction and down-regulation of Sox17 and its possible roles during the course of gastrointestinal tumorigenesis". Gastroenterology. 137 (4): 1346–57. doi:10.1053/j.gastro.2009.06.041. hdl:2297/25144. PMID 19549530. S2CID 6296792.
  • Stefanovic S, Abboud N, Désilets S, Nury D, Cowan C, Pucéat M (September 2009). "Interplay of Oct4 with Sox2 and Sox17: a molecular switch from stem cell pluripotency to specifying a cardiac fate". The Journal of Cell Biology. 186 (5): 665–73. doi:10.1083/jcb.200901040. PMC 2742180. PMID 19736317.
  • MacCarthy CM, Malik V, Wu G, et al., & Velychko S (September 2022). "Enhancing Sox/Oct cooperativity induces higher-grade developmental reset". bioRxiv. doi:10.1101/2022.09.23.509242

This article incorporates text from the United States National Library of Medicine, which is in the public domain.


  • v
  • t
  • e