Riesz sequence

In mathematics, a sequence of vectors (xn) in a Hilbert space ( H , , ) {\displaystyle (H,\langle \cdot ,\cdot \rangle )} is called a Riesz sequence if there exist constants 0 < c C < + {\displaystyle 0<c\leq C<+\infty } such that

c ( n | a n | 2 ) n a n x n 2 C ( n | a n | 2 ) {\displaystyle c\left(\sum _{n}|a_{n}|^{2}\right)\leq \left\Vert \sum _{n}a_{n}x_{n}\right\Vert ^{2}\leq C\left(\sum _{n}|a_{n}|^{2}\right)}

for all sequences of scalars (an) in the ℓp space ℓ2. A Riesz sequence is called a Riesz basis if

s p a n ( x n ) ¯ = H {\displaystyle {\overline {\mathop {\rm {span}} (x_{n})}}=H} .

Alternatively, one can define the Riesz basis as a family of the form { x n } n = 1 = { U e n } n = 1 {\displaystyle \left\{x_{n}\right\}_{n=1}^{\infty }=\left\{Ue_{n}\right\}_{n=1}^{\infty }} , where { e n } n = 1 {\displaystyle \left\{e_{n}\right\}_{n=1}^{\infty }} is an orthonormal basis for H {\displaystyle H} and U : H H {\displaystyle U:H\rightarrow H} is a bounded bijective operator. Hence, Riesz bases need not be orthonormal, i.e., they are a generalization of orthonormal bases.[1]

Paley-Wiener criterion

Let { e n } {\displaystyle \{e_{n}\}} be an orthonormal basis for a Hilbert space H {\displaystyle H} and let { x n } {\displaystyle \{x_{n}\}} be "close" to { e n } {\displaystyle \{e_{n}\}} in the sense that

a i ( e i x i ) λ | a i | 2 {\displaystyle \left\|\sum a_{i}(e_{i}-x_{i})\right\|\leq \lambda {\sqrt {\sum |a_{i}|^{2}}}}

for some constant λ {\displaystyle \lambda } , 0 λ < 1 {\displaystyle 0\leq \lambda <1} , and arbitrary scalars a 1 , , a n {\displaystyle a_{1},\dotsc ,a_{n}} ( n = 1 , 2 , 3 , ) {\displaystyle (n=1,2,3,\dotsc )} . Then { x n } {\displaystyle \{x_{n}\}} is a Riesz basis for H {\displaystyle H} .[2][3]

Theorems

If H is a finite-dimensional space, then every basis of H is a Riesz basis.

Let φ {\displaystyle \varphi } be in the Lp space L2(R), let

φ n ( x ) = φ ( x n ) {\displaystyle \varphi _{n}(x)=\varphi (x-n)}

and let φ ^ {\displaystyle {\hat {\varphi }}} denote the Fourier transform of φ {\displaystyle {\varphi }} . Define constants c and C with 0 < c C < + {\displaystyle 0<c\leq C<+\infty } . Then the following are equivalent:

1. ( a n ) 2 ,     c ( n | a n | 2 ) n a n φ n 2 C ( n | a n | 2 ) {\displaystyle 1.\quad \forall (a_{n})\in \ell ^{2},\ \ c\left(\sum _{n}|a_{n}|^{2}\right)\leq \left\Vert \sum _{n}a_{n}\varphi _{n}\right\Vert ^{2}\leq C\left(\sum _{n}|a_{n}|^{2}\right)}
2. c n | φ ^ ( ω + 2 π n ) | 2 C {\displaystyle 2.\quad c\leq \sum _{n}\left|{\hat {\varphi }}(\omega +2\pi n)\right|^{2}\leq C}

The first of the above conditions is the definition for ( φ n {\displaystyle {\varphi _{n}}} ) to form a Riesz basis for the space it spans.

See also

Notes

References

  • Antoine, J.-P.; Balazs, P. (2012). "Frames, Semi-Frames, and Hilbert Scales". Numerical Functional Analysis and Optimization. 33 (7–9). arXiv:1203.0506. doi:10.1080/01630563.2012.682128. ISSN 0163-0563.
  • Christensen, Ole (2001), "Frames, Riesz bases, and Discrete Gabor/Wavelet expansions" (PDF), Bulletin of the American Mathematical Society, New Series, 38 (3): 273–291, doi:10.1090/S0273-0979-01-00903-X
  • Mallat, Stéphane (2008), A Wavelet Tour of Signal Processing: The Sparse Way (PDF) (3rd ed.), pp. 46–47, ISBN 9780123743701
  • Paley, Raymond E. A. C.; Wiener, Norbert (1934). Fourier Transforms in the Complex Domain. Providence, RI: American Mathematical Soc. ISBN 978-0-8218-1019-4.
  • Young, Robert M. (2001). An Introduction to Non-Harmonic Fourier Series, Revised Edition, 93. Academic Press. ISBN 978-0-12-772955-8.

This article incorporates material from Riesz sequence on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License. This article incorporates material from Riesz basis on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.