M-spline

In the mathematical subfield of numerical analysis, an M-spline[1][2] is a non-negative spline function.

An M-spline family of order three with four interior knots.

Definition

A family of M-spline functions of order k with n free parameters is defined by a set of knots t1  ≤ t2  ≤  ...  ≤  tn+k such that

  • t1 = ... = tk
  • tn+1 = ... = tn+k
  • ti < ti+k for all i

The family includes n members indexed by i = 1,...,n.

Properties

An M-spline Mi(x|kt) has the following mathematical properties

  • Mi(x|kt) is non-negative
  • Mi(x|kt) is zero unless ti ≤ x < ti+k
  • Mi(x|kt) has k − 2 continuous derivatives at interior knots tk+1, ..., tn−1
  • Mi(x|kt) integrates to 1

Computation

M-splines can be efficiently and stably computed using the following recursions:

For k = 1,

M i ( x | 1 , t ) = 1 t i + 1 t i {\displaystyle M_{i}(x|1,t)={\frac {1}{t_{i+1}-t_{i}}}}

if ti ≤ x < ti+1, and Mi(x|1,t) = 0 otherwise.

For k > 1,

M i ( x | k , t ) = k [ ( x t i ) M i ( x | k 1 , t ) + ( t i + k x ) M i + 1 ( x | k 1 , t ) ] ( k 1 ) ( t i + k t i ) . {\displaystyle M_{i}(x|k,t)={\frac {k\left[(x-t_{i})M_{i}(x|k-1,t)+(t_{i+k}-x)M_{i+1}(x|k-1,t)\right]}{(k-1)(t_{i+k}-t_{i})}}.}

Applications

M-splines can be integrated to produce a family of monotone splines called I-splines. M-splines can also be used directly as basis splines for regression analysis involving positive response data (constraining the regression coefficients to be non-negative).

References

  1. ^ Curry, H.B.; Schoenberg, I.J. (1966). "On Polya frequency functions. IV. The fundamental spline functions and their limits". Journal d'Analyse Mathématique. 17: 71–107. doi:10.1007/BF02788653.
  2. ^ Ramsay, J.O. (1988). "Monotone Regression Splines in Action". Statistical Science. 3 (4): 425–441. doi:10.1214/ss/1177012761. JSTOR 2245395.


  • v
  • t
  • e