Arnold conjecture

Mathematical conjecture

The Arnold conjecture, named after mathematician Vladimir Arnold, is a mathematical conjecture in the field of symplectic geometry, a branch of differential geometry.[1]

Strong Arnold conjecture

Let ( M , ω ) {\displaystyle (M,\omega )} be a closed (compact without boundary) symplectic manifold. For any smooth function H : M R {\displaystyle H:M\to {\mathbb {R} }} , the symplectic form ω {\displaystyle \omega } induces a Hamiltonian vector field X H {\displaystyle X_{H}} on M {\displaystyle M} defined by the formula

ω ( X H , ) = d H . {\displaystyle \omega (X_{H},\cdot )=dH.}

The function H {\displaystyle H} is called a Hamiltonian function.

Suppose there is a smooth 1-parameter family of Hamiltonian functions H t C ( M ) {\displaystyle H_{t}\in C^{\infty }(M)} , t [ 0 , 1 ] {\displaystyle t\in [0,1]} . This family induces a 1-parameter family of Hamiltonian vector fields X H t {\displaystyle X_{H_{t}}} on M {\displaystyle M} . The family of vector fields integrates to a 1-parameter family of diffeomorphisms φ t : M M {\displaystyle \varphi _{t}:M\to M} . Each individual φ t {\displaystyle \varphi _{t}} is a called a Hamiltonian diffeomorphism of M {\displaystyle M} .

The strong Arnold conjecture states that the number of fixed points of a Hamiltonian diffeomorphism of M {\displaystyle M} is greater than or equal to the number of critical points of a smooth function on M {\displaystyle M} .[2][3]

Weak Arnold conjecture

Let ( M , ω ) {\displaystyle (M,\omega )} be a closed symplectic manifold. A Hamiltonian diffeomorphism φ : M M {\displaystyle \varphi :M\to M} is called nondegenerate if its graph intersects the diagonal of M × M {\displaystyle M\times M} transversely. For nondegenerate Hamiltonian diffeomorphisms, one variant of the Arnold conjecture says that the number of fixed points is at least equal to the minimal number of critical points of a Morse function on M {\displaystyle M} , called the Morse number of M {\displaystyle M} .

In view of the Morse inequality, the Morse number is greater than or equal to the sum of Betti numbers over a field F {\displaystyle {\mathbb {F} }} , namely i = 0 2 n dim H i ( M ; F ) {\textstyle \sum _{i=0}^{2n}\dim H_{i}(M;{\mathbb {F} })} . The weak Arnold conjecture says that

# { fixed points of  φ } i = 0 2 n dim H i ( M ; F ) {\displaystyle \#\{{\text{fixed points of }}\varphi \}\geq \sum _{i=0}^{2n}\dim H_{i}(M;{\mathbb {F} })}

for φ : M M {\displaystyle \varphi :M\to M} a nondegenerate Hamiltonian diffeomorphism.[2][3]

Arnold–Givental conjecture

The Arnold–Givental conjecture, named after Vladimir Arnold and Alexander Givental, gives a lower bound on the number of intersection points of two Lagrangian submanifolds L and L {\displaystyle L'} in terms of the Betti numbers of L {\displaystyle L} , given that L {\displaystyle L'} intersects L transversally and L {\displaystyle L'} is Hamiltonian isotopic to L.

Let ( M , ω ) {\displaystyle (M,\omega )} be a compact 2 n {\displaystyle 2n} -dimensional symplectic manifold, let L M {\displaystyle L\subset M} be a compact Lagrangian submanifold of M {\displaystyle M} , and let τ : M M {\displaystyle \tau :M\to M} be an anti-symplectic involution, that is, a diffeomorphism τ : M M {\displaystyle \tau :M\to M} such that τ ω = ω {\displaystyle \tau ^{*}\omega =-\omega } and τ 2 = id M {\displaystyle \tau ^{2}={\text{id}}_{M}} , whose fixed point set is L {\displaystyle L} .

Let H t C ( M ) {\displaystyle H_{t}\in C^{\infty }(M)} , t [ 0 , 1 ] {\displaystyle t\in [0,1]} be a smooth family of Hamiltonian functions on M {\displaystyle M} . This family generates a 1-parameter family of diffeomorphisms φ t : M M {\displaystyle \varphi _{t}:M\to M} by flowing along the Hamiltonian vector field associated to H t {\displaystyle H_{t}} . The Arnold–Givental conjecture states that if φ 1 ( L ) {\displaystyle \varphi _{1}(L)} intersects transversely with L {\displaystyle L} , then

# ( φ 1 ( L ) L ) i = 0 n dim H i ( L ; Z / 2 Z ) {\displaystyle \#(\varphi _{1}(L)\cap L)\geq \sum _{i=0}^{n}\dim H_{i}(L;\mathbb {Z} /2\mathbb {Z} )} .[4]

Status

The Arnold–Givental conjecture has been proved for several special cases.

  • Givental proved it for ( M , L ) = ( C P n , R P n ) {\displaystyle (M,L)=(\mathbb {CP} ^{n},\mathbb {RP} ^{n})} .[5]
  • Yong-Geun Oh proved it for real forms of compact Hermitian spaces with suitable assumptions on the Maslov indices.[6]
  • Lazzarini proved it for negative monotone case under suitable assumptions on the minimal Maslov number.
  • Kenji Fukaya, Yong-Geun Oh, Hiroshi Ohta, and Kaoru Ono proved it for ( M , ω ) {\displaystyle (M,\omega )} semi-positive.[7]
  • Urs Frauenfelder proved it in the case when ( M , ω ) {\displaystyle (M,\omega )} is a certain symplectic reduction, using gauged Floer theory.[4]

See also

References

Citations

  1. ^ Asselle, L.; Izydorek, M.; Starostka, M. (2022). "The Arnold conjecture in C P n {\displaystyle \mathbb {C} \mathbb {P} ^{n}} and the Conley index". arXiv:2202.00422 [math.DS].
  2. ^ a b Rizell, Georgios Dimitroglou; Golovko, Roman (2017-01-05). "The number of Hamiltonian fixed points on symplectically aspherical manifolds". arXiv:1609.04776 [math.SG].
  3. ^ a b Arnold, Vladimir I., ed. (2005). Arnold's Problems. Springer Berlin, Heidelberg. pp. 284–288. doi:10.1007/b138219. ISBN 978-3-540-20748-1.
  4. ^ a b (Frauenfelder 2004)
  5. ^ (Givental 1989b)
  6. ^ (Oh 1995)
  7. ^ (Fukaya et al. 2009)

Bibliography

  • Frauenfelder, Urs (2004), "The Arnold–Givental conjecture and moment Floer homology", International Mathematics Research Notices, 2004 (42): 2179–2269, arXiv:math/0309373, doi:10.1155/S1073792804133941, MR 2076142.
  • Fukaya, Kenji; Oh, Yong-Geun; Ohta, Hiroshi; Ono, Kaoru (2009), Lagrangian intersection Floer theory - anomaly and obstruction, International Press, ISBN 978-0-8218-5253-8
  • Givental, A. B. (1989a), "Periodic maps in symplectic topology", Funktsional. Anal. I Prilozhen, 23 (4): 37–52
    • Givental, A. B. (1989b), "Periodic maps in symplectic topology (translation from Funkts. Anal. Prilozh. 23, No. 4, 37-52 (1989))", Functional Analysis and Its Applications, 23 (4): 287–300, doi:10.1007/BF01078943, S2CID 123546007, Zbl 0724.58031
  • Oh, Yong-Geun (1992), "Floer cohomology and Arnol'd-Givental's conjecture of [on] Lagrangian intersections", Comptes Rendus de l'Académie des Sciences, 315 (3): 309–314, MR 1179726.
  • Oh, Yong-Geun (1995), "Floer cohomology of Lagrangian intersections and pseudo-holomorphic disks, III: Arnold-Givental Conjecture", The Floer Memorial Volume, pp. 555–573, doi:10.1007/978-3-0348-9217-9_23, ISBN 978-3-0348-9948-2